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1. Introduction
Interest in the study of multipoint problems for partial differential equations is

related both to the significance of their physical interpretation, finding the process
described by a given equation when the states of this process are known through
several observations, and to the development of a general theory of boundary value
problems for partial differential equations.

Multipoint problems for partial differential equations have been studied from
various perspectives by many authors [5, 6, 8, 7, 9, 3, 2, 1]. Most of these works
addressed cases where the problems were well-posed. However, such problems are
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generally conditionally well-posed, and their solvability is often associated with the
problem of small denominators, for which the metric approach has proven effective.

In this paper, we investigate the conditions for the solvability of problems with
two-point conditions in the time variable for systems of partial differential equations
that are not solved with respect to the highest time derivative. These systems have
constant coefficients and include an arbitrary elliptic operator involving the highest
time derivative in bounded domains. Such problems are conditionally well-posed,
and their solvability is connected to the problem of small denominators.

Using the method of separation of variables, we provide explicit formulas for
the solutions of the considered problems in the form of series based on systems of
orthogonal functions. Additionally, we establish conditions for the unique solvabil-
ity of the problems in the corresponding functional spaces. Applying methods and
results from metric number theory, we prove metric theorems on lower bounds for
small denominators that arise during the study of the considered problems.

2. Notations
Throughout the paper, we will employ the following notations.

1. Ω is the p-dimensional torus formed by formed by identifying the opposite
faces of the cube {x ∈ Rp | 0 ≤ xr ≤ 2π, r = 1, 2, · · · p}.

2. Zp(Z+
p) is the set of points in Rp with integer (non-negative integer) coordi-

nates.

3. D = (0, T )× Ω

4. Cr(D̄) is the Banach space of continuous functions along with all derivatives
up to order r over a domain D, equipped with the maximum norm.

5. C(n,m)(D̄) is the Banach space of Cm-functions in the variable t, which are
Cn in the variable x ∈ Rp, equipped with the maximum norm.

6. Aβ
δ (Ω), δ > 0, β > 0, is the Banach space of 2π-periodic complex functions in

x1, · · · , xp with the norm ||ϕ||Aβ
δ (Ω)

:=
∑

k≥0 |ϕk| exp(δ|k|β)

7. Cn([0, T ], Aβ
δ (Ω)) is the Banach space of Cn-functions in t defined on D̄ such

that, for each fixed t ∈ [0, T ], the partial derivatives with respect to x belong
to Aβ

δ (Ω).

8. C̃r(D̄), Ãβ
δ (Ω), and C̃n([0, T ], Ãβ

δ (Ω)) are the corresponding spaces of vector-
valued functions.
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3. Preliminaries
In this paper, we consider the following two-point problem in the domain D:(

∂

∂t

)2

L

(
∂

∂x

)
u(t, x) +

∑
|s|≤m

As ∂|s|u(t, x)

∂xs1
1 · · · ∂xsp

p
= f(t, x), (1)

u(t1, x) = φ1(x), u(t2, x) = φ2(x), 0 ≤ t1 < t2 ≤ T, (2)

where u(t, x) =

[
u1

u2

]
; f(t, x) =

[
f1
f2

]
; φj(x) =

[
φj1

φj2

]
, j = 1, 2. Moreover, As =[

asrq
]
p,q=1,2

, arq ∈ R, Bs =
[
bsrq
]
p,q=1,2

, l ≥ 1, bsrq ∈ R, and

L

(
∂

∂x

)
≡
∑
|s|≤ℓ

Bs ∂|s|

∂xs1
1 · · · ∂xsp

p

is an elliptic matrix differential expression.
We focus exclusively on the case where m > l. The complementary case will be

addressed in a forthcoming paper.
Let us assume the following condition:

A := detA◦ ̸= 0. (3)

The choice of the domain D implies that the functions uq(t, x), fq(t, x), φ1q(x),
and φq2(x) (for q = 1, 2) are 2π-periodic with respect to x1, · · · , xp.

We look for the solution to the problem (1)-(2) in the form of the following
vector series:

u(t, x) =
∑
|k|≥0

uk(t) exp(i(k, x)), where uk(t) =

[
uk1

uk2

]
. (4)

Let us define the functions:

f(t, x) =
∑
|k|≥0

fk(t) exp(i(k, x)), fk(t) =
1

(2π)p

∫
Ω

f(t, x) exp(−i(k, x))dx,

φj(x) =
∑
|k|≥0

φjk exp(i(k, x)), φjk =
1

(2π)p

∫
Ω

φ(t, x) exp(−i(k, x))dx.
(5)

By substituting the function u(t, x) from (4) into Equation (1) and Conditions (2),
we obtain that each of the vector functions uk(t), for k ∈ Zp, will be the solution to
the two-point problem for the following system of ordinary differential equations:

N(k)uk(t) := L(ik)u
(2)
k (t) +

∑
|s|≤m

As(ik1)
s1 · · · (ikp)spuk(t) = fk(t), (6)
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uk(t1) = φ1k, uk(t2) = φ2k, (7)

where φjk =

[
φkj1

φkj2

]
, j = 1, 2, fk(t) =

[
f1k
f2k

]
.

The solution of the problem (6)-(7) needs to be in the following form:

uk(t) = wk(t) + vk(t), k ∈ Zp (8)

where wk(t) =

[
w1k

w2k

]
, vk(t) =

[
v1k
v2k

]
are the corresponding solutions to the following

problems:
N(k)wk(t) = 0, wk(t1) = φ1k, wk(t2) = φ2k, (9)

N(k)vk(t) = fk(t), vk(t1) = 0, vk(t2) = 0. (10)

From now on, we will assume that for all k ∈ Zp:

det L(ik) ≡ det

∑
|s|≤ℓ

Bs(ik1)
s1 · · · (ikp)sp

 ̸= 0. (11)

Lemma 3.1. There exist constants C0 and K(C0) such that for all k ∈ Zp, |k| >
K(C0), the following estimate is true

det L(ik) ≥ C0|k|4l. (12)

Proof. The proof relies on the ellipticity of the operator L and is identical to the
proof of [8, Lemma 1], so we omit its details.

Suppose that for all k ∈ Zp, the roots λj(k), j = 1, 2, of the following equation

Λ(λ, k) := det

L(ik)λ+
∑
|s|≤m

As(ik1)
s1 · · · (ikp)sp

 =
2∑

j=0

Λj(k)λ
j = 0, (13)

are distinct. It follows from Condition (3) and (11) that these roots are different
from zero.

By Lemma 3.1 and Inequality (12), we obtain the following estimate for the
roots of the polynomial Λ(λ, k) in (13):

|λj(k)| ≤ A1|k|2(m−2l), j = 1, 2, A1 > 0, (14)

here A1 is a positive constant that does not depend on k.
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The fundamental system of solutions of the equation N(k)ωk(t) = 0 is the
following:

Y1(t) =

[
g(λ1) exp(µ1(k)t) g(λ2) exp(µ2(k)t)

exp(µ1(k)t) exp(µ2(k)t)

]
,

Y2(t) =

[
g(λ1) exp(−µ1(k)t) g(λ2) exp(−µ2(k)t)

exp(−µ1(k)t) exp(−µ2(k)t)

]
,

where µj =
√

|λj| exp(i arg(λj/2)), j = 1, 2, and

g(λj) = −
λj

∑
|s|≤2l

bs12(ik1) · · · (ikp)sp +
∑

|s|≤2l

as12(ik1) · · · (ikp)sp

λj

∑
|s|≤2l

bs11(ik1) · · · (ikp)sp +
∑

|s|≤2l

as11(ik1) · · · (ikp)sp
, j = 1, 2. (15)

Then, for each k ∈ Zp, the components of the solution of the problem (9) are
represented by the following formulas:

wk1(t) =
2∑

j=1

(Ckjg(λj) exp(µj(k)t) + Ck,2+jg(λj) exp(−µj(k)t)),

wk2(t) =
2∑

j=1

(Ckj exp(µj(k)t) + Ck,2+j exp(−µj(k)t)),
(16)

where the coefficients Ckm,m = 1, 2, 3, 4, are determined from the following system
of equations:

2∑
j=1

(Ckjg(λj) exp(µj(k)tq) + Ck,2+jg(λj) exp(−µj(k)tq)) = φkq1, q = 1, 2

2∑
j=1

(Ckj exp(µj(k)tq) + Ck,2+j exp(−µj(k)tq)) = φkq2, q = 1, 2.
(17)

The determinant of the system (17) is calculated by

∆(k) = (g(λ1)− g(λ2))
2

2∏
j=1

(exp(−µj(k)(t2 − t1))−exp(µj(k)(t2 − t1))). (18)

Theorem 3.2. The solution of the problem (1)-(2) in the space C
(2,m)

(D) is unique
if and only if the following conditions are satisfied:

(∀k ∈ Zp) 1− exp(2µj(k)T ) ̸= 0, j = 1, 2, (19)

g(λ1)− g(λ2) ̸= 0. (20)
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Proof. Assume that the solution of the problem (1)-(2) in the space C
(2,m)

(D)
is unique. If for some k = k ∈ Zp at least one of the conditions (19) or (20)
does not hold, then ∆(k) = 0, and the homogeneous problem corresponding to (9)
has nontrivial solutions wk(t), which are represented by Formulas (16). Here Ckm,
m = 1, 2, 3, 4, is the solution for k = k of the system of homogeneous equations
corresponding to the system (17). Then the homogeneous problem associated with
the problem (1)-(2) has non-trivial solutions of the form u(t, x) = uk(t) exp(i(k, x)).
Consequently, the solution of the non-homogeneous problem (1)-(2), if it exists, will
not be unique, leading to a contradiction.

Conversely, suppose that (19) and (20) are satisfied. If there are two different

solutions u1 and u2 to the problem (1)-(2) in the space C
(2,m)

(D), then the vector-

valued function ũ(t, x) = u1(t, x)− u2(t, x), which belongs to the space C
(2,m)

(D),
is a solution of a homogeneous problem corresponding to (1)-(2), and it has the
Fourier series representation of the form (4).

The vector-valued series for Nũ(t, x) coincides with the series obtained by ap-
plying the operator N to the series for the vector-valued function ũ(t, x). From Par-
seval’s equality (see [4]) for the component of the vector-valued functions Nũ(t, x),
ũ(t1, x), and ũ(t2, x), it follows that each of the Fourier coefficients ũk(t) of ũ(t, x)
is a solution of the homogeneous problem which corresponds to the problem (9).
Thus, by conditions (19)-(20), for all k ∈ Zp we get ũk(t) ≡ 0. Thus, from Parseval
equality for the components of ũk(t) and their continuity, it follows that ũ(t, x) = 0.

By the uniqueness of the expansion of a periodic function into the Fourier series,
we conclude that ũ(t, x) = 0, which implies that u1(t, x) = u2(t, x). This leads to
a contradiction.

3.1. Main Results

Assume that conditions (19) and (20) are satisfied. Then, the solution of the
problems (1)-(2) is unique. Consequently, for each k ∈ Zp the system of equations
(17) has a unique solution, and there is also a unique solution to the problem (9).
Moreover, there is a unique Green’s matrix Gk(t, τ) of the homogeneous problem
corresponding to the problem (10), which allows us to represent the solution of the
problem (10) as follows:

vk(t) =

∫ T

0

Gk(t, τ)fk(τ)dτ, (21)
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Gk(t, τ)=



gk(t, τ)−M(k)/[(g(λ1)− g(λ2))
2∏

j=1

P (µj, t1, t2)], 0 < τ < t1,

gk(t, τ)−H(k)/[(g(λ1)− g(λ2))
2∏

j=1

P (µj, t1, t2)], t1 < τ < t2,

gk(t, τ) +M(k)/[(g(λ1)− g(λ2))
2∏

j=1

P (µj, t1, t2)], t2 < τ < T,

(22)

gk(t, τ) =
sgn (t− τ)

(g(λ1)− g(λ2))
×[

g(λ1)Q(µ1, t, τ)− g(λ2)Q(µ2, t, τ) g(λ1)g(λ2)(Q(µ2, t, τ)−Q(µ1, t, τ))
Q(µ1, t, τ)−Q(µ2, t, τ) g(λ1)Q(µ2, t, τ)− g(λ2)Q(µ1, t, τ)

]
, (23)

M(k) :=
[
mij(k)

]
i,j=1,2

=

[
g(λ1)S(k)− g(λ2)R(k) g(λ1)g(λ2)(S(k)−R(k))

S(k)−R(k) g(λ1)S(k)− g(λ2)R(k)

]
,

(24)

H(k) :=
[
hij(k)

]
i,j=1,2

=

[
g(λ1)B(k)− g(λ2)C(k) g(λ1)g(λ2)(B(k)− C(k))

B(k)− C(k) g(λ1)B(k)− g(λ2)C(k)

]
,

(25)

C(k) = P (µ1, t1, t2) (P (µ2, τ + t2, t+ t1)− P (µ2, τ + t1, t+ t2) + 2P (µ2, t1 + t2, t+ τ)) ,

B(k) = P (µ2, t1, t2) (P (µ1, τ + t1, t+ t2) + P (µ1, τ + t2, t+ t1) + 2P (µ1, t1 + t2, t+ τ)) ,

S(k) = P (µ2, t1, t2) (P (µ1, τ + t1, t+ t2)− P (µ1, τ + t2, t+ t1)) ,

R(k) = P (µ1, t1, t2) (P (µ2, τ + t2, t+ t1)− P (µ2, τ + t1, t+ t2)) ,

P (µ, ξ, η) = exp(−µ(η − ξ))− exp(µ(η − ξ)),

Q(µ, ξ, η) = exp(−µ(η − ξ)) + exp(µ(η − ξ)).

The components of the solution of the problem (9) have the form

wk1 =
1

g(λ1)− g(λ2)

(
g(λ1)

P (µ1, t, t2)

P (µ1, t1, t2)
− g(λ2)

P (µ2, t, t2)

P (µ2, t1, t2)

)
φk11+

+ g(λ1)g(λ2)

(
P (µ1, t, t2)

P (µ1, t1, t2)
+

P (µ2, t, t2)

P (µ2, t1, t2)

)
φk12

+

(
g(λ1)

Q(µ1, t, t1)

P (µ1, t1, t2)
+ g(λ2)

Q(µ2, t, t1)

P (µ2, t1, t2)

)
φk21

+ g(λ1)g(λ2)

(
Q(µ1, t, t2)

P (µ1, t1, t2)
+

Q(µ2, t, t1)

P (µ2, t1, t2)

)
φk22. (26)
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wk2 =
1

g(λ1)− g(λ2)

(
P (µ1, t, t2)

P (µ1, t1, t2)
− P (µ2, t, t2)

P (µ2, t1, t2)

)
φk11+

+

(
g(λ2)

P (µ1, t, t2)

P (µ1, t1, t2)
+ g(λ1)

P (µ2, t, t2)

P (µ2, t1, t2)

)
φk12

+

(
Q(µ1, t, t1)

P (µ1, t1, t2)
+

Q(µ2, t, t1)

P (µ2, t1, t2)

)
φk21

+

(
g(λ2)

Q(µ1, t, t1)

P (µ1, t1, t2)
+ g(λ1)

Q(µ2, t, t1)

P (µ2, t1, t2)

)
φk22. (27)

Based on Formulas (4) and (8), we obtain the formal representation of the
solution of the problem (1) and (2) in the form of the following series:

u(t, x) =
∑
|k|≥0

(wk(t) + vk(t)) exp(i(k, x)), (28)

where wk(t) and vk(t) and k ∈ Zp, are defined by Formulas (21)-(27), respectively.
In general, the series (28) is divergent since the non-zero quantities P (µj, t1, t2),
j = 1, 2, and g(λ1) − g(λ2), which appear in the denominators of the expressions
for the functions ωk(t) and vk(t), k ∈ Zp, can become arbitrarily small in modulus
for an infinite set of vectors k ∈ Zp. Therefore, the question of the existence of a
solution to the problem (1), (2) is related to the problem of small denominators.

Denote by Ãδ(Ω), C̃([0, T ], and Ãδ(Ω)) the spaces of vector functions corre-
sponding to the spaces Aδ(Ω), C([0, T ], and Aδ(Ω)).

Theorem 3.3. Assume that there exist positive constants β1, β2 such that the
following inequalities hold for all (except for a finite number of) vectors k ∈ Zp.

| exp(−µj(t2 − t1))− exp(µj(t2 − t1))| > |k|−β1exp(−ν|k|), = (m− 2l) j = 1, 2.
(29)∣∣∣∣ g(λ1)g(λ2)

g(λ1)− g(λ2)

∣∣∣∣ < |k|β2 . (30)

If φj ∈ Ãγ
δ , j = 1.2, C̃([0, T ], Ãγ

δ ), δ > 2AT + ν, then there exists a solution of the
problem (1), (2) in the space C̃2,m(D), which depends continuously on the functions
φj(x), j = 1, 2, and f(t, x).
Proof. From (24), (25) and the estimate (14) it follows that for all (except for a
finite number of) vectors k ∈ Zp, the following inequalities hold

|mij(k)| ≤ C1 exp
(
2A1/2|k|γ

)
, |hij(k)| ≤ C2 exp

(
2A1/2|k|γ

)
, i, j = 1, 2, C1, C2 > 0.

(31)
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From Formulas (21)-(28) and Inequalities (29), (30), (14) it follows that there exists
a solution u(t, x) such that

||u(t, x)||C̃2,m(D) ≤
2∑

j=1

||uj(t, x)||C̃2,m(D) ≤
∑
|k|≥0

 2∑
q=1

C3|φqk| exp(δ|k|γ) + C4f̃k exp(δ|k|γ)



≤ C5

(
2∑

q=1

||φq(x)||Ãγ
δ
+ ||f(t, x)||C̃([0,T ],Ãγ

δ )

)
< ∞, where f̃k = max

0≤t≤T
|fk|, k ∈ Zp.

Therefore, u(t, x) ∈ C̃2,m(D).
Next, we will examine when Inequalities (29) and (30) hold. Note that

| exp(−µj(t2 − t1))− exp(µj(t2 − t1))| = | exp(−µj(t2 − t1))||1− exp(2µj(t2 − t1))|.

If Reµj(k) ̸= 0, j = 1.2, then, taking into account (14), we will get

| exp(−µj(t2 − t1))− exp(µj(t2 − t1))| > exp(−A1/2|k|(m−2l)T )|Reµj(k)(t2 − t1)|.
(32)

Conversely, since for all x ∈ [0; π
2
], sinx ≥ 2x/π, we will obtain the following

estimate:

| exp(−µj(t2 − t1))− exp(µj(t2 − t1))| >
∣∣∣sin ∣∣∣ Imµj(k)(t2−t1)

π
−mk

∣∣∣ π∣∣∣ >
> 4(t2 − t1)|k|(m−2l)

∣∣∣ Imµj(k)

π|k|(m−2l) − mk

(t2−t1)|k(m−2l)|

∣∣∣ , (33)

where mk ∈ Z is such that
∣∣∣ Imµj(k)(t2−t1)

π
−mk

∣∣∣ < 1
2
.

It follows from [8, Lemma 1] that for almost all numbers T = t2−t1 with respect
to the Lebesgue measure, denoted as mess, the following inequalities∣∣∣∣∣Imµj(k)

π|k|m−2l
− mk

T |k|m−2l

∣∣∣∣∣ > 1

|k|p+(m−2l)+ε
, j = 1, 2; 0 < ε < 1 (34)

are valid for all (except for a finite number of) pairs (m, k), m ∈ Z, k ∈ Zp.
Let us represent the constant term Λ0 of Equation (13) as follows:

Λ0 = det

∑
|s|≤m

As(ik1)
s1 · · · (ikp)sp

 =
∑

|ν|≤2m

aν(ik1)
ν1 · · · (ikp)νp , (35)
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where
aν =

∑
2∑

s=1
s
(h)
ν =νq , q=1,··· ,p

det
[
asrq(h)

]
r,h=1,2

,

and a
s(h)
rh (r, h = 1, 2) are the elements of the h-th column of a matrix As, |s| ≤ m

and s
(h)
q is q-th component of the multi-index of this matrix.

We denote by a ∈ Rσ the vector which consists of the coefficients aν of a
polynomial (35), where σ is the number of solutions of the inequality ν ≤ 2m.

Lemma 3.4. For almost all vectors a (with respect to the Lebesgue measure in
Rσ), the following inequality holds:

|λj(k)| > |k|−p−2m−ε, j = 1, 2, ε > 0, (36)

for all (except for a finite number of) vectors k ∈ Zp.
Proof. From Formula (35) it follows that

|Λ0(k)| ≥ max (|ReΛ0(k)|, |ImΛ0(k)|) ≥ |ReΛ0(k)|.

We will show that for almost all vectors a (with respect to the Lebesgue measure
in Rσ), the following inequality holds:

|ReΛ0(k)| ≥ |k|−p−ε. (37)

We denote by W the set of those vectors a that belong to some σ-dimensional
parallelepiped Πσ = [α1, β1]× Πσ−1, for which the inequality

|ReΛ0(k)| < |k|−p−ε. (38)

has an infinite number of solutions k ∈ Zp.
Let’s fix k and a2, . . . , aσ. Then the set Wk(a2, . . . , aσ) of those a1 ∈ [α1, β1] for

which Inequality (38) holds, satisfies the following inequality:

messWk(a2, . . . , aσ) < |k|−p−ε. (39)

By integrating the estimate (39) over the parallelepiped Πσ−1, we obtain that the
measure of the set Wk of those vectors a ∈ Πσ for a fixed k satisfies the inequality:

messWk < 2C|k|−p−ε,

where C is the volume of the parallelepiped Πσ−1. Since the series
∑
|k|>0

2C|k|−p−ε

converges, it follows from [10, Theorem 1] that messW = 0. Therefore, for almost
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all a ∈ Πσ, Inequality (37) holds. Furthermore, Since the space Rσ can be covered
by the countable number of parallelepipeds Πδ, it follows that Inequality (37) holds
for almost all a ∈ Πσ.

By Inequalities (14), (37), and the estimate detL(ik) ≤ C|k|4l, we obtain

|λ1| =
Λ0(k)

| detL(ik)| |λ2|
> Cσ

|k|−p−ε

|k|4l|k|2(m−2l)
≥ Cσ|k|−p−2m−ε.

That concludes the proof.
The following theorem follows from Inequalities (31)–(34), and Lemma 3.4.

Theorem 3.5. I. If Reµj(k) ̸= 0, j = 1.2, then for almost all vectors ā (with
respect to the Lebesgue measure in Rσ), Inequalities (29) hold for all (except for a
finite number of) vectors k ∈ Zp when β1 >

−p−m+2l
2

and ν = A1/2.
II. If Reµj(k) = 0, j = 1.2, then for almost all numbers T (with respect to the

Lebesgue measure in R), Inequalities (29) hold for all (except for a finite number
of) vectors k ∈ Zp if β1 > p.

We denote by b = (b1, . . . , bp) the vector with the coordinates br = det
[
Bγ(r)

]
,

γ(r) = (0, . . . , 0︸ ︷︷ ︸
r−1

, 2l, 0, . . . , 0), r = 1, . . . , p, and by h = (h1, . . . , hp), where hr =

det
[
Aγ(r)

]
, r = 1, . . . , p γ(r) = (0, . . . , 0︸ ︷︷ ︸

r−1

,m, 0, . . . , 0).

Theorem 3.6. For almost all vectors h (with respect to the Lebesgue measure in
Rp) the inequality

|λ1(k)− λ2(k)| > H|k|η, η = −p

2
+m− 2l − ε, H > 0, ε > 0 (40)

is hold for all (except for a finite number of) vectors k ∈ Zp.
Proof. For the discriminantD(Λ) of the polynomial Λ(λ, k) (see (14)) the following
representations are valid:

D(Λ) = Λ2
2(k)(λ1(k)− λ2(k))

2, (41)

D(Λ) = − 1

Λ2(k)

∣∣∣∣∣∣
Λ2(k) Λ1(k) Λ0(k)
2Λ2(k) Λ1(k) 0

0 2Λ2(k) Λ1(k)

∣∣∣∣∣∣ , (42)

where Λ2(k) = L(ik). We will show that for almost all vectors h that belong to
the parallelepiped Πp = [α, β]× Πp−1 ⊂ Rp the inequality

|ReD(Λ)| > |k|µ, µ < −p+ 2(m+ 2l) (43)
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is fulfilled for all but a finite number of vectors k ∈ Zp.
We denote by W the set of vectors h for which inequality

|ReD(Λ)| < |k|µ, µ < −p+ 2(m+ 2l) (44)

holds for an infinite number of vectors k ∈ Zp. We denote byWk the set of vectors h
for which Inequality (44) is valid for a fixed k ∈ Zp. Without loss of the generality,
we assume that h1 ̸= 0 and |k1| = max

1≤i≤p
|ki|. From Formula (41) we have

D(Λ) = −4Λ0Λ2 + Λ2
1.

Taking into account that

Λ0 = k2m
1 det

[
a
(m,0,...,0)
rh

]
r,h=1,2

+
′∑

|ν|≤2m

aν(ik1)
ν1 . . . (ikp)

νp ,

where the symbol ”′” above the summation
∑

indicates that the summation is
excluded for ν = (2m, 0, . . . , 0), we get

ReD(Λ) = −4h1k
2m
1 ReΛ2(k) + Re (Λ1)

2 (45)

It follows from Equality (45) and Estimate (12) that for all k ∈ Zp, |k| > K(C0)∣∣∣∣∂ReD(Λ)

∂h1

∣∣∣∣ > 4C0√
2
|k1|2m|k|4e > C(p)|k|2(m+2l).

Then, by [8, Lemma 2, ch. 1], the measure of the set Wk(h1) of those values
h1 ∈ [α, β] that satisfy Inequality (44) (for a fixed h1, . . . , hp) has the following
estimate:

|Wk(h1)| ≤ C |k|−p−ε, ε > 0. (46)

By integrating the estimate (46) with respect to the variables h2, . . . , hp over the
parallelepiped Πp−1, we get

|Wk| ≤ C |k|−p−ε, ε > 0. (47)

The estimate (47) implies the convergence of the series
∑
|k|>0

|Wk|. Therefore, from

[10, Lemma 2.1], we conclude that the measure of the set W is zero. Since the
space Rp can be covered by the countable number of parallelepipeds Πp, Inequality
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(40) is thus proved. From the inequality |D(Λ)| ≥ |ReD(Λ)| and (43) and (41),
we obtain that for almost all vectors h, the following estimate:

|λ1(k)− λ2(k)| > H |k|−( p
2
+m−2l)−ε, ε > 0,

is valid for all (except for a finite number of) vectors k ∈ Zp. We denote by

dν =
∑

2∑
n=1

s
(h)
q =νq , q=1,...,p

det
[
d
s(h)
rh

]
r,h=1,2

,

where d
s(h)
rh , r = 1, 2, are the elements of the h-th column of any matrix

[
dsrh
]
r,h=1,2

with elements ds11 = bs111, d
s
12 = bs111, |s1| ≤ 2l; ds21 = as212, d

s
22 = as211, |s2| ≤ m, and

s
(h)
q is the q-th component multi-index from of this matrix; d̄ = (d1, . . . , dp) is the
vector with coordinates

d2 = det

[
d
γ1(r)
11 d

γ1(r)
12

d
γ2(r)
12 d

γ2(r)
22

]
, r = 1, . . . , p,

where γ1(r) = (0, . . . , 0︸ ︷︷ ︸
r−1

, 2l, 0, . . . , 0), γ2(r) = (0, . . . , 0︸ ︷︷ ︸
r−1

,m, 0, . . . , 0), r = 1, . . . , p,

and
P (ik) =

∑
|ν|≤m+2l

dν(ik1)
ν1 . . . (ikp)

νp .

Lemma 3.7. For almost all vectors d̄ (with respect to the Lebesgue measure in Rp)
inequality

|P (ik)| > C |k|ξ, ξ = −p+m+ 2l − ε (48)

is true for all (except for a finite number of) vectors k ∈ Zp.
Proof. The proof is nearly identical to the proof of Theorem 4.4 in [8].

Theorem 3.8. For almost all vectors (h, d) (with respect to the Lebesgue measure
in R2p) and for almost all vectors ā (with respect to the Lebesgue measure in Rσ),
Inequality (30) holds for β2 > 2(m − 2l) + 3

2
p, for all (except for a finite number)

of vectors k ∈ Zp.
Proof. From Equality (15) and Estimate (14) it follows that∣∣∣∣ g(λ1)g(λ2)

g(λ1)− g(λ2

∣∣∣∣ < |k|4(m−l)

|λ1(k)− λ2(k)||P (ik)|
.

This inequality, Theorem 3.6, and Lemma 3.4 conclude the proof.
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4. Conclusion
The article addresses the complexities associated with a specific class of par-

tial differential equations that incorporate local two-point conditions in time and
periodicity conditions in space.

We establish criteria for the existence and uniqueness of solutions. Furthermore,
the metric theorems developed offer critical insights into the behaviour of small
denominators encountered during solution construction, ensuring that our findings
are robust and applicable to broader contexts within the field.
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